Variable selection for spatial random field predictors under a Bayesian mixed hierarchical spatial model.
نویسندگان
چکیده
A health outcome can be observed at a spatial location and we wish to relate this to a set of environmental measurements made on a sampling grid. The environmental measurements are covariates in the model but due to the interpolation associated with the grid there is an error inherent in the covariate value used at the outcome location. Since there may be multiple measurements made on different covariates there could be considerable uncertainty in the covariate values to be used. In this paper we examine a Bayesian approach to the interpolation problem and also a Bayesian solution to the variable selection issue. We present a series of simulations which outline the problem of recovering the true relationships, and also provide an empirical example.
منابع مشابه
Bayesian Inference for Spatial Beta Generalized Linear Mixed Models
In some applications, the response variable assumes values in the unit interval. The standard linear regression model is not appropriate for modelling this type of data because the normality assumption is not met. Alternatively, the beta regression model has been introduced to analyze such observations. A beta distribution represents a flexible density family on (0, 1) interval that covers symm...
متن کاملBayesian Analysis of Survival Data with Spatial Correlation
Often in practice the data on the mortality of a living unit correlation is due to the location of the observations in the study. One of the most important issues in the analysis of survival data with spatial dependence, is estimation of the parameters and prediction of the unknown values in known sites based on observations vector. In this paper to analyze this type of survival, Cox...
متن کاملTransformed Gaussian Markov Random Fields and 1 Spatial Modeling
15 The Gaussian random field (GRF) and the Gaussian Markov random field (GMRF) have 16 been widely used to accommodate spatial dependence under the generalized linear mixed 17 model framework. These models have limitations rooted in the symmetry and thin tail of the 18 Gaussian distribution. We introduce a new class of random fields, termed transformed GRF 19 (TGRF), and a new class of Markov r...
متن کاملSpatial Beta Regression Model with Random Effect
Abstract: In many applications we have to encountered with bounded dependent variables. Beta regression model can be used to deal with these kinds of response variables. In this paper we aim to study spatially correlated responses in the unit interval. Initially we introduce spatial beta generalized linear mixed model in which the spatial correlation is captured through a random effect. T...
متن کاملBayesian Variable Selection in Regression with Networked Predictors
We consider Bayesian variable selection in linear regression when the relationships among a possibly large number of predictors are described by a network given a priori. A class of motivating examples is to predict some clinical outcomes with high-dimensional gene expression profiles and a gene network, for which it is assumed that the genes neighboring to each other in the network are more li...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Spatial and spatio-temporal epidemiology
دوره 1 1 شماره
صفحات -
تاریخ انتشار 2009